Genetics of MPNs – insights from genomic and functional studies

January 10, 2012
Ross L. Levine, M.D.
Human Oncology and Pathogenesis Program
Leukemia Service, Department of Medicine
Memorial Sloan Kettering Cancer Center
Weill Cornell School of Medicine
Scientific Questions/Advances

• Are mutations which activate JAK2 a hallmark of all MPN patients?

• What do mutations which occur in concert with JAK2/MPL mutations do?

• What have we learned about JAK2 inhibitors

• What novel therapies are of potential benefit for MPN patients?
JAK2V617F Mutations in MPN patients

No mutation in normal tissue
Heterozygous mutation in MPN Cell

Valine→Phenylalanine Amino Acid Change

- 90% of PV
- 60% of ET/PMF
- <10% of CMML/AML

*James et al. Nature 2005
Levine et al. Cancer Cell 2005
Baxter et al. Lancet 2005
Kralovics et al. NEJM 2005
Conserved domains in JAK family members

Cytokine Receptor Binding

- JH7
- JH6
- JH5
- JH4
- JH3
- JH2
- JH1

“Pseudo kinase” domain
- autoinhibition of kinase

- STAT Binding

Expression of JAK2V617F in vivo results in PV phenotype*

*Wernig et al. Blood 2006
Lacout et al. Blood 2006

Constitutively active tyrosine kinase

IP JAK2

WB: p-tyr

WT V617F

WB: JAK2

V617F
JAK2V617F negative MPN

• JAK2V617F-negative PV
 - JAK2 exon 12 mutations
 - loss of function mutations in LNK, negative regulator of JAK2 (Oh et al Blood 2010)

• JAK2V617F-negative ET/PMF
 - MPL mutations in 10%
 - LNK mutations in <5%

• Somatic mutations have not been identified in 30-40% of MPN patients
 - Sequencing known genes in the JAK2 pathway has not provided the answer->how to proceed?
Whole Exome Sequencing to identify MPN Alleles*

• To date we have sequenced 40 exomes from MPN patients
 - 20 JAK2/MPL negative patients
 - 15 patients with myelofibrosis
 - 5 patients with MPN which transformed to leukemia

• We have sequenced members of 2 families with high penetrance MPN – try to find familial predisposition locus

• Complements efforts by Sanger/European group focusing on JAK2+ disease, PV/ET/PMF

*Jay Patel, Ann Mullally, Ben Ebert (MPN Foundation Grant)
Lessons from Exome Sequencing to Date

• Easy to generate data – much more difficult to accurately analyze it

• Recurrence/testing large number of samples will be key

• Functional studies will take months to years to find true “drivers” which cause MPN versus “passengers” along for the ride

• Many mutations may not be specific to MPN, but might be seen in MPN, MDS, AML

• We hope to find lesions with clinical significance
 - Novel therapeutic targets
 - Lesions which predict outcome to ensure we aggressively treat patients with poor prognosis and leave good prognosis patients alone
 - Lesions which occur at transformation to AML->prevent or treat leukemic transformation
Are there cooperating somatic mutations?

• If most MPN patients are JAK2 positive, why do some people develop PV, or ET, or PMF?

• Perhaps it is the presence of a second mutation, which occurs in concert with JAK2, which determines the specific MPN?
TET2 Deletions/Mutations in Myeloid Malignancies*

LOH/deletions involving a single gene → \textit{TET2}

Sequence analysis of \textit{TET2} in MDS/MPN samples identified somatic mutations in 10-20% of MPN and MDS patients

*Delhommeau \textit{et al} NEJM 2009
Langemeijer \textit{et al.} Nat Gen 2009
TET2 Mutations in Myeloid Malignancies

*Abdel-Wahab et al Blood 2009

- TET2 mutations are not specific to MPN – seen in all myeloid malignancies, and likely in other leukemias as well!

A) MPN 7.6% (27/354)

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

B) CMML 42% (29/69)

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

C) AML 10.1% (12/119)

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>
Somatic ASXL1 Mutations in MPN*

Like TET2 seen in all myeloid malignancies->not specific to MPN

*Omar Abdel-Wahab, Jay Patel
Leukemic Transformation of MPN

- Patients with PV, ET, and PMF are at high risk for transformation to AML-associated with a dismal prognosis
- Genetic/Epigenetic events which contribute to leukemic transformation are not known
- Approximately 50% of JAK2+ MPN patients transform to a JAK2-negative MPN*

*Campbell et al. Blood 2006
Theocarides et al. Blood 2007
TET2 Mutations, but not ASXL1 Mutations are Acquired at Leukemic Transformation

<table>
<thead>
<tr>
<th>Sample</th>
<th>MPD</th>
<th>Genotype during MPN</th>
<th>Genotype during AML</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JAK2</td>
<td>TET2</td>
</tr>
<tr>
<td>1</td>
<td>MF</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>2</td>
<td>MF</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>3</td>
<td>MF</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>4</td>
<td>MF</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>5</td>
<td>MF</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>6</td>
<td>MF</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>7</td>
<td>MF</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>9</td>
<td>PV</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>10</td>
<td>PV</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>11</td>
<td>PV</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>12</td>
<td>ET</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>13</td>
<td>PV</td>
<td>V617F</td>
<td>WT</td>
</tr>
<tr>
<td>14</td>
<td>MF</td>
<td>V617F</td>
<td>WT</td>
</tr>
</tbody>
</table>

Frequency of mutation: TET2 78.6%, ASXL1 21.4%, ASXL1 50%, ASXL1 42.9%, ASXL1 28.6%
Cooperating Mutations in MPN Patients

- Recent studies have identified somatic disease alleles which occur in concert with JAK2/MPL mutations
 - TET2 loss of function mutations in 10% of MPN patients
 - ASXL1 mutations in 8-10% of MPN patients
 - IDH1/2 mutations in 3-5% of MPN patients
 - EZH2 mutations in 10-15% of patients

- Same mutations are seen in MDS and AML patients - they do not explain the PV/ET/MF conundrum

- In some cases (TET2, IDH1/2) these mutations occur most commonly at progression to AML

- Limited functional data suggest these mutations affect the epigenetic state of MPN cells - affect the way DNA is packaged and which parts of it are used in MPN cells
What about gene expression – can we measure gene expression and learn something about pathogenesis of MPN*

- Determine if there is a common genetic signature associated with MPN or with *JAK2V617F* mutations
- Identify genes which segregate with clinical phenotype
- Identify candidate genes in JAK2/MPL-negative MPN

*Ben Ebert/Todd Golub
Gene Expression Profiling in MPN

- Purified neutrophils from MPN patients
- All patients had JAK2 allele burden, MPL, TET2, ASXL1 mutations
- Only patients who had clonal disease were included in expression array analysis
 - Mutational allele burden > 51%
 - X inactivation DS > 0.25 in females
 - Clonal abnormality on SNP Array
- Compared to purified neutrophils from normal donors
- Integrated with Affy SNP Array, genotyping for > 500 known disease alleles using Oncomap (Broad Institute)

*Ben Ebert/Todd Golub
Gene Expression Profiling of MPN Samples clearly distinguishes MPN Patients from Normal Blood Cells
Gene expression profiling does not distinguish patients based on clinical diagnosis

JAK2 V617F Homozygous

comparison:

- PV vs MMM

JAK2 WT comparison:

- ET vs MMM

No genes significantly differentially expressed (FDR < 0.05)
Dominant Gene Expression Signature in MPN is Homozygous JAK2 Mutant Signature
Differential JAK2 Expression in MPN patients

- JAK2 expression levels differ according to mutational status and allele burden
 - Not explained by JAK2 haplotype

- In vitro data suggests JAK2 regulates its own expression

- Suggests JAK2 expression level, and not just mutational status, relevant to MPN pathogenesis – not clear this is recapitulated in murine models
Is there a JAK2 signature in heterozygous/WT MPN patients?

JAK2 shRNA in HEL cells to generate JAK2 signature

Similar data with JAK inhibitor
JAK2 shRNA signature in MPN and Normal samples

JAK2 V617F Homozygous (PV/MMM) vs normal

JAK2 V617F Heterozygous (ET/MMM) vs normal

JAK2 WT (ET/MMM) vs normal

D

E

F

Enrichment Score (ES)

Homozygous

Normal

FDR qvalue= 0.018

Heterozygous

Normal

FDR qvalue= 0.035

WT

Normal

FDR qvalue= 0.038

JAK2 V617F Homozygous (PV/MMM) vs normal

JAK2 V617F Heterozygous (ET/MMM) vs normal

JAK2 WT (ET/MMM) vs normal

Enrichment Score (ES)

Homozygous

Normal

FDR qvalue= 0.018

Heterozygous

Normal

FDR qvalue= 0.035

WT

Normal

FDR qvalue= 0.038
JAK2 shRNA signature in MPN and Normal samples

<table>
<thead>
<tr>
<th>HOMOZYGOUS</th>
<th>HETEROZYGOUS</th>
<th>NORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>MMM</td>
<td>ET</td>
</tr>
</tbody>
</table>

Seen in all MPN patients, not in normals

Suggests JAK2 is activated in all MPN patients regardless of specific mutation
Model of MPN Pathogenesis

- Mutations which activate JAK2 are the most common lesion -> best therapeutic target
- Possible other mutations affect response to JAK inhibitors
Preclinical/Clinical Development of JAK inhibitors

• Agents in Current Clinical Development:
 • INCB18424: Potent dual JAK1/JAK2 inhibitor (approved)
 • TG101348/SAR302503: Most JAK2 selective, has FLT3 inhibitory activity (phase I completed)
 • CYT387: JAK1/JAK2 inhibitor (phase I completed)
 • SB1518: fairly JAK2 selective (phase I completed)
 • AZD1480: JAK2/JAK1 inhibitory activity (phase I)
 • LY2784544: phase I trial
 • Others in earlier phase development

• XL019: discontinued due to neurotoxicity->not clear if this is a JAK dependent effect or due to off-target effects

• Differences between these drugs may have a lot to do with pharmacokinetics and half-life, not just targets
INCB18424 treatment improves outcome in MPLW515L-mutant PMF mice*

- Improved splenomegaly, thrombocytosis, leukocytosis, and myelofibrosis
- No reduction in mutant population in stem/progenitor or in differentiated cells

*Sachie Marubayashi, Priya Koppikar
JAK Inhibitor Treatment Decreases Circulating Cytokine Levels and Improves Body Weight
Clinical Trials to Date with JAK2 Inhibitors

- JAK2 inhibitors improve spleen size, elevated blood counts, clinical symptoms - Is this due to effects on the malignant clone?

- Main side effect of JAK2 inhibitors is anemia/thrombocytopenia - likely due to “on-target” effects of inhibiting JAK2 in normal cells

- To date we have seen minimal effects on mutant allele burden - incomplete dependence on JAK2 - inherent or acquired resistance/persistence

In murine model if we stop rx -> all mice succumb to disease within 21 days
Can we improve our ability to target JAK2*

- It is presumed the hematopoietic toxicities are due to inhibition of JAK2 in normal cells—has this been clearly delineated in vivo?

- Can we develop better therapies which improve the therapeutic window and target the malignant cell?
 - additional therapies
 - alternate dosing strategies for JAK2 inhibitors

- Collaborated with Gabriela Chiosis and Jay Bradner to test ability of additional compounds to inhibit JAK2 dependent proliferation

PU-H71

Sachie Marubyashi, Priya Koppikar
PU-H71 Inhibits Growth and Signaling of MPN cells

Vf neo with PU-H71

IC50 = 35 nM

W515L neo with PU-H71

IC50 = 190 nM

NOMO1 with PU-H71

IC50 = 10.3 nM

SET-2 with PU-H71

Growth inhibition associated with degradation of JAK2
PU-H71 demonstrates efficacy in vivo in JAK2V617F and MPLW515L transplant models

![Survival](image)

- **Survival**
 - Graph showing survival over treatment days.
 - Comparison between Vehicle and PU-H71.
 - p < 0.0004

![Spleen Weight](image)

- **Spleen Weight**
 - Bar graph comparing mJAK2 V617F Vehicle (n=5), mJAK2 V617F PU-H71 (n=4), hMPL W515L Vehicle (n=3), hMPL W515L PU-H71 (n=4).
 - *p < 0.01
PU-H71 Depletes JAK2 in leukemic, but not normal hematopoietic cells

PK/PD studies show PU-H71 is selectively taken up and maintained in tumor, but not normal cells – basis for therapeutic index
PU-H71 Degrades JAK2/Inhibits JAK-STAT signaling in 1° MPN Samples

Clinical studies of HSP90 inhibitors and preclinical studies of combination JAK2/HSP90 inhibitor therapies are underway.
Summary

• Mutations which activate JAK-STAT Signaling are seen in almost all MPN patients but there are additional genetic lesions seen in MPN patients which contribute to MPN/MDS/AML stem cell survival.

• Additional novel therapeutic approaches targeted at JAK2 and at other oncogenic signaling pathways might offer benefit alone or in conjunction with JAK2 inhibitors.

• Genetic studies of myeloid malignancies will likely identify novel mutations with pathogenetic and therapeutic relevance.
Acknowledgements

Cornell
- Dick Silver
- Ari Melnick
- Gail Roboz

Mayo
- Reuben Mesa

NHLBI, NCI, HHMI, LLS, Starr Cancer Consortium, Geoffrey Beene Foundation, Gabrielle’s Angel Foundation, MPN Foundation

Levine Lab
- Jay Patel
- Franck Rappaport
- Omar Abdel-Wahab
- Alan Shih
- Priya Koppikar
- Sachie Marubayashi
- Olga Guryanova
- Neha Bhagwat
- Lindsay Saunders
- Raajit Rampal
- Ria Kleppe
- Suveg Pandey
- Todd Hricik
- Sophie McKenney

Harvard/Broad
- Gary Gilliland
- Ben Ebert
- Todd Golub
- Ann Mullally

MSKCC
- Stephen Nimer
- Marty Tallman
- Mark Heaney
- Sergio Giralt

MDACC
- Serge Verstovsek
- Miloslav Beran
- Taghi Mansouri
Acknowledgements

- MPN Foundation

- All of you!!! -> publications resulting from MPN patient involvement
 - Levine et al. Cancer Cell 2005
 - Levine et al. Blood 2005
 - Levine et al. Blood 2006
 - Pikman et al. Plos Medicine 2006
 - Scott et al. NEJM 2007
 - Kawamata et al. Experimental Hematol 2007
 - Kilpivaara et al. Nature Genetics 2009
 - Abdel-Wahab et al. Blood 2009
 - Abdel-Wahab, Verstovsek et al. Canc Res 2010
 - Kilkakis et al. Nature 2011